Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare Earth Electrolyte Solutions at $25^{\circ} \mathrm{C}$. 2. The Rare Earth Perchlorates

Joseph A. Rard, Herman O. Weber, and Frank H. Spedding*
Ames Laboratory-ERDA and Department of Chemistry, lowa State University, Ames, lowa 50011

Abstract

The osmotic coefficients of the aqueous triperchlorates of La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu have been measured from 0.1 m to saturation at $25^{\circ} \mathrm{C}$. These data were fitted to semiempirical least-squares equations, and these equations were used to calculate water activities and mean molal activity coefficients for each electrolyte. The water activities of these solutions are much lower than for the corresponding rare earth chlorides at the same molalities, whereas the activity coefficients of the rare earth perchlorates are much larger. This behavior and changes in these properties across the rare earth series are discussed in terms of differences in interactions between anions, cations, and water, including the effect of the rare earth ionic radius upon cation hydration.

Recently the water activities and electrolyte activity coefficients of the rare earth chlorides have been determined up to saturation at $25^{\circ} \mathrm{C}(16)$. These properties were found to depend mainly on total hydration of the rare earth ion, as influenced by changes in the ionic radii and the inner sphere hydration number. Thermodynamic ($9,10,14$) and transport (13, 15) properties have been reported for the rare earth perchlorates and significant differences were found for these properties from those reported for the corresponding rare earth chlorides. In both cases, only outer sphere ion pairs are believed to form (1, 13). Transport data $(13,15)$ at high concentrations indicate that water may be bound more strongly in the rare earth perchlorate systems than in the rare earth chlorides. Isopiestic measurements give direct information about hydration differences between these systems, so the activity measurements were extended to include the rare earth perchlorates.

Experimental Section

The isopiestic equilibrations were performed in the same stainless steel isopiestic chambers that were used for the rare earth chloride (16) and calcium chloride (6) studies. The measurements were made at $25.00 \pm 0.01^{\circ} \mathrm{C}$. All samples were equilibrated in cups made of tantalum metal. The isopiestic reference solutions were $\mathrm{KCl}, \mathrm{CaCl}_{2}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$. The concentrated solutions were equilibrated for 3-4 days or longer while those with rare earth perchlorate concentrations below 0.5 m were equilibrated for 2-6 weeks. Equilibrium was considered to occur when the molalities of duplicate samples of each electrolyte agreed to within $\pm 0.1 \%$ of the average above 0.5 m and $\pm 0.15 \%$ below this concentration. In many cases the equilibrations were more accurate than these limits indicate. Equilibrium was approached from higher and lower concentrations in all cases. All sample weights were converted to mass. The rare earth perchlorate densities were obtained from Spedding et al. (14), and the densities of $\mathrm{KCl}, \mathrm{CaCl}_{2}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions were taken from the International Critical Tables.

Stock solutions of the rare earth perchlorates were prepared from reagent grade HClO_{4} and oxides made from ion-exchange purified rare earths. The purity of each of the rare earth oxides
was better than 99.85% by weight, with the principal impurities being $\mathrm{Ca}, \mathrm{Fe}, \mathrm{Si}$, and adjacent rare earths (most of the rare earth oxides were probably of much higher purity than this limit indicates). The stock solutions were adjusted to their equivalence pH values to ensure a three to one ratio of perchlorate to rare earth ions (12). The concentrated rare earth perchlorate stock solutions were analyzed by EDTA and gravimetric sulfate methods. The analyses agreed to at least $\pm 0.1 \%$ in terms of the molality, for each salt. The preparation and analyses of the KCl , CaCl_{2}, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ reference solutions have been previously described (6,16). Conductivity water, distilled from a $\mathrm{KOH}-$ KMnO_{4} solution, was used in all solution preparations and dilutions.

Calculations and Errors

The molal osmotic coefficient of a rare earth perchlorate solution is given by

$$
\begin{equation*}
\phi=-\frac{1000 \ln a_{1}}{\nu m M_{1}} \tag{1}
\end{equation*}
$$

where m is the molality of the solution, $M_{1}=18.0154 \mathrm{~g} \mathrm{~mol}^{-1}$ is the molecular weight of water, ν is the number of ions formed by the complete dissociation of one molecule of solute into its component ions, and a_{1} is the activity of water in the solution. All concentrations are in terms of the IUPAC-69 atomic weights. If the rare earth perchlorate solution is in isoplestic equilibrium with a standard solution whose osmotic coefficient is accurately known as a function of concentration, the osmotic coefficient of the rare earth perchlorate solution is given by

$$
\begin{equation*}
\phi=\frac{\nu^{*} \phi^{*} m^{*}}{\nu m} \tag{2}
\end{equation*}
$$

where the asterisk refers to the standard. The osmotic coefficients of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and CaCl_{2} were taken from Rard, Habenschuss, and Spedding (4,5), while those of KCl were from Hamer and Wu (2) with a small correction applied as described earlier (4). The experimental isopiestic molalities and the rare earth perchlorate osmotic coefficients are given in Table I. The highest concentration listed for each salt is the saturated solution.

The rare earth perchlorate osmotic coefficients were fitted to equations of the form

$$
\begin{equation*}
\phi=1-(A / 3)\left(m^{1 / 2}\right)+\sum_{i} A_{i} m^{r_{i}} \tag{3}
\end{equation*}
$$

where $A=(0.5108)(3)\left(6^{1 / 2}\right)(2.302585)=8.6430$ and the r_{i} were not required to form a consecutive sequence of powers. Application of the Gibbs-Duhem relation to eq 3 yields

$$
\begin{equation*}
\ln \gamma_{ \pm}=-A\left(m^{1 / 2}\right)+\sum_{i} A_{i}\left(\frac{r_{i}+1}{r_{i}}\right) m^{r_{i}} \tag{4}
\end{equation*}
$$

where $\gamma_{ \pm}$is the mean molal activity coefficient of the solute. This equation is just the Debye-Hückel limiting law with a series of terms containing powers of the molality. The experimental isopiestic data of this research extend from 0.1 m to saturation. Data below 0.1 m are desirable for obtaining reliable activity coefficients. Spedding and Jaffe (11) have obtained approximate

$\mathrm{m}, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	$m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
	$\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			$\mathrm{Pr}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl			
0.00500	-	0.8764	-3.3	0.097658	0.17965	0.8411^{8}	18.1
0.01000	-	0.8526	-1.0	0.18127	0.34759	0.8663	1.7
0.01500	-	0.8399	0.8	0.28881	0.59691	0.9278	-1.0
0.02000	-	0.8319	2.0	0.36764	0.80202	0.9782	-1.5
	$\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl			0.37489	0.82175	0.9829	-1.6
0.092643	0.17479	$0.8631^{\text {a }}$	39.0		$\mathrm{Pr}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}		
0.18225	0.35158	0.8713	1.9	0.46074	0.67011	1.0416	-1.4
0.28049	0.58024	0.9289	0.6	0.52006	0.76957	1.0875	2.2
0.37255	0.81843	0.9850	-2.4	0.60433	0.91021	1.1493	1.2
0.38898	0.86373	0.9957	-2.7	0.68637	1.0491	1.2115	-0.8
		vs. CaCl_{2}	-2.0	0.76735	1.1902	1.2786	-0.2
	$\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$			0.85845	1.3521	1.3586	1.5
0.47971	0.70306	1.0586		0.96142	1.5338	1.4479	-2.0
0.51144	0.75777	1.0855	2.4	1.0370	1.6756	1.5256	4.6
0.64228	0.97707	1.1822	1.2	1.1342	1.8492	1.6147	-1.1
0.76448	1.1880	1.2802	0.8	1.2197	2.0090	1.7035	1.3
0.86582	1.3670	1.3675	1.2	1.3235	2.2013	1.8104	-0.2
0.94634	1.5099	1.4384	-0.3	1.4141	2.3713	1.9075	-0.4
1.0467	1.6918	1.5329	0.1	1.5135	2.5587	2.0162	-1.0
1.1579	1.8959	1.6424	0.5	1.6049	2.7324	2.1189	-0.9
1.2437	2.0547	1.7297	0.6	1.6984	2.9095	2.2239	-2.4
1.3438	2.2410	1.8341	0.1	1.7762	3.0597	2.3155	-0.6
1.4480	2.4362	1.9457	-0.6	1.8638	3.2268	2.4163	-1.5
1.5527	2.6340	2.0612	-0.4	1.9588	3.4104	2.5286	-0.2
1.6465	2.8115	2.1660	-0.9	2.0478	3.5813	2.6332	0.1
1.7400	2.9894	2.2723	-0.6	2.1567	3.7916	2.7620	1.3
1.8234	3.1476	2.3670	-1.3	2.2815	4.0319	2.9077	1.6
1.9098	3.3122	2.4663	-1.3	2.3772	4.2170	3.0194	2.5
2.0067	3.4978	2.5792	0.0	2.4735	4.4025	3.1293	2.1
2.1065	3.6881	2.6943	0.3	2.5552	4.5599	3.2211	1.2
2.2374	3.9374	2.8442	0.5	2.6647	4.7716	3.3422	-0.2
2.3140	4.0842	2.9325	1.8	2.7748	4.9873	3.4635	-0.1
2.4124	4.2696	3.0407	-0.6	2.8770	5.1886	3.5728	-1.4
2.4816	4.4016	3.1180	-0.4	3.0123	5.4587	3.7137	-4.2
2.5616	4.5571	3.2096	3.1	3.0880	5.6172	3.7960	-1.1
2.6468	4.7198	3.3018	2.5	3.2114	5.8773	3.9230	-1.3
2.7507	4.9191	3.4123	1.7	3.3117	6.0964	4.0248	-1.5
2.8503	5.1104	3.5148	-0.7	3.3846	6.2620	4.0990	-0.8
2.9523	5.3093	3.6188	-2.3	3.4848	6.5018	4.2030	2.9
3.0470	5.4992	3.7163	-1.2	3.5662	6.7026	4.2838	2.5
3.1512	5.7107	3.8200	-1.7	3.6529	6.9272	4.3695	1.9
3.2514	5.9196	3.9183	-2.2	3.7367	7.1584	4.4537	2.7
3.3510	6.1389	4.0170	-2.2	3.8109	7.3736	4.5277	2.7
3.4243	6.2985	4.0862	-1.3	3.8925	7.6160	4.6045	-2.2
3.5136	6.5072	4.1734	1.1	3.969 g	7.8586	4.6785	-6.0
3.6180	6.7611	4.2723	1.7	4.0498	8.1235	4.7577	-7.4
3.6888	6.9424	4.3393	2.5	4.1335	8.4154	4.8431	-6.8
3.7751	7.1746	4.4208	3.8	4.2116	8.7062	4.9261	-3.2
3.8572	7.4020	4.4940	1.1				
3.9272	7.6028	4.5547	-2.6		$\left.\mathrm{Pr}(\mathrm{ClO})_{4}\right)_{3}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
3.9339	7.6244	4.5618	-1.6	4.0267	12.390	4.7502	8.4
4.0060	7.8397	4.6238	-5.7	4.0996	12.695	4.8220	6.4
4.1143	8.1889	4.7243	-3.8	4.2004	13.118	4.9179	0.0
4.1885	8.4392	4.7940	-1.2	4.2912	13.518	5.0098	-0.3
				4.3911	13.971	5.1127	1.9
	$\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			4.4926	14.444	5.2185	7.0
3.9691	11.978	4.6014	5.7	4.5962	14.895	5.3070	-4.0
4.0617	12.341	4.6840	3.6	4.6335	15.070	5.3436	-2.0
4.1653	12.753	4.7752	0.9	4.7031	15.396	5.4101	2.3
4.2541	13.115	4.8543	0.3	4.7182	15.457	5.4199	-0.9
4.3858	13.660	4.9698	-0.6				
4.4938	14.117	5.0641	0.9		$\left(\mathrm{ClO}_{4}\right)_{3}($ from	ductance)	
4.5836	14.491	5.1364	-1.4	0.00500	-	0.8764	-3.6
4.6583	14.809	5.1975	0.0	0.01000	-	0.8526	-1.5
4.6840	14.918	5.2178	0.5	0.01500	-	0.8399	0.1
4.7500	15.201	5.2705	3.7	0.02000	-	0.8319	1.2
4.7759	15.293	5.2823	-3.1		$\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl		
	$\mathrm{Pr}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			0.10947	0.20047	0.8354	3.0
0.00500	-	0.8764	-3.6	0.10991	0.20149	0.8362	3.6
0.01000	-	0.8526	-1.1	0.19113	0.36979	0.8732	-1.7
0.01500	-	0.8399	1.0 2.4	0.28057	0.57775	0.9247	-3.1
0.02000	-	0.8319	2.4	0.37239	0.81629	0.9829	-2.8

$m, \operatorname{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	$m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \operatorname{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
0.44570	1.0260	1.0330	-1.3	4.6275	15.222	5.4195	0.3
0.53651	1.0387	1.0978	-0.2	4.6822	15.490	5.4763	1.9
0.54157	1.3258	1.1020	0.4	$\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			
0.54770	1.3467	1.1071	1.1				
$\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}				0.01000	-	0.8526	-1.4
0.57440	0.85826	1.1243	-1.3	0.01500	-	0.8399	0.7
0.67295	1.0257	1.2004	-0.6	0.02000	-	0.8319	2.3
0.75615	1.1701	1.2685	0.3				
0.82563	1.2933	1.3290	2.0	$\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl			
0.90615	1.4376	1.4016	3.5	0.097296	0.17965	$0.8442^{\text {a }}$	21.5
1.0023	1.6097	1.4888	1.6	0.18056	0.34759	0.8697	4.5
1.0891	1.7686	1.5731	2.1	0.28818	0.59691	0.9299	-1.6
1.1585	1.8957	1.6413	0.9	0.36660	0.80202	0.9810	-2.5
1.2321	2.0329	1.7174	1.3	0.37388	0.82175	0.9855	-2.9
1.3200	2.1967	1.8092	0.1	$\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}			
1.4011	2.3494	1.8967	-0.3	0.45859	0.67011	1.0465	-1.1
1.4663	2.4724	1.9679	-1.2	0.51749	0.76957	1.0929	2.5
1.5318	2.5970	2.0413	-1.4	0.60138	0.91021	1.1549	0.9
1.6092	2.7440	2.1282	-2.7	0.68286	1.0491	1.2178	-0.9
1.6955	2.9095	2.2277	-2.7	0.76336	1.1902	1.2853	-0.1
1.7750	3.0626	2.3208	-2.4	0.85438	1.3521	1.3650	0.8
1.8623	3.2310	2.4236	-2.1	0.95668	1.5338	1.4551	-2.0
1.9297	3.3615	2.5039	-1.4	1.0320	1.6756	1.5330	4.7
1.9498	3.4004	2.5278	-1.2	1.1288	1.8492	1.6225	-0.7
2.0123	3.5209	2.6016	-1.4	1.2141	2.0090	1.7114	1.6
2.0889	3.6692	2.6928	-0.9	1.3174	2.2013	1.8187	0.6
2.1797	3.8464	2.8023	1.3	1.4079	2.3713	1.9159	0.1
2.2587	3.9996	2.8959	1.9	1.5072	2.5587	2.0247	-1.0
2.3133	4.1055	2.9602	2.3	1.5984	2.7324	2.1275	-1.1
2.3417	4.1598	2.9926	1.4	1.6912	2.9095	2.2334	-1.8
2.4019	4.2779	3.0644	3.2	1.7686	3.0597	2.3254	0.3
2.4323	4.3351	3.0974	1.0	1.8565	3.2268	2.4258	-2.4
2.5255	4.5170	3.2056	1.8	1.9508	3.4101	2.5390	-0.6
2.6114	4.6857	3.3047	2.9	2.0391	3.5813	2.6444	0.2
2.6459	4.7530	3.3433	2.5	2.1480	3.7916	2.7731	-0.3
2.7125	4.8823	3.4159	0.3	2.2714	4.0319	2.9206	1.2
2.8227	5.1013	3.5384	0.5	2.3668	4.2170	3.0326	1.0
2.9193	5.2947	3.6429	-0.9	2.4619	4.4025	3.1440	1.4
3.0053	5.4696	3.7346	-2.2	2.5429	4.5599	3.2366	0.4
3.1047	5.6776	3.8402	-2.9	2.6493	4.7716	3.3616	3.6
3.1997	5.8794	3.9395	-4.0	2.7594	4.9873	3.4828	0.6
3.2887	6.0777	4.0341	-2.7	2.8611	5.1886	3.5927	-2.6
3.3856	6.3027	4.1369	-0.5	2.9936	5.4587	3.7369	-3.3
3.4683	6.5020	4.2232	0.3	3.0693	5.6172	3.8191	-2.7
3.5557	6.7206	4.3121	-0.6	3.1874	5.8773	3.9525	4.8
3.6527	6.9816	4.4142	1.9	3.2892	6.0964	4.0523	-2.6
3.7269	7.1894	4.4894	1.1	3.3606	6.2620	4.1283	-1.2
3.8073	7.4271	4.5712	0.5	3.4594	6.5018	4.2338	1.7
3.9139	7.7618	4.6796	-0.7	3.5391	6.7026	4.3166	2.0
4.0043	8.0619	4.7717	-1.9	3.6245	6.9272	4.4037	0.8
4.0185	8.1152	4.7894	1.1	3.7070	7.1584	4.4894	1.2
4.0955	8.3895	4.8719	4.0	3.7816	7.3736	4.5628	-2.7
4.1043	8.4197	4.8802	3.1	3.8592	7.6160	4.6442	-2.0
4.1437	8.5680	4.9242	6.3	3.9334	7.8586	4.7219	-1.8
4.1888	8.7393	4.9721	7.2	4.0115	8.1235	4.8031	-2.6
4.1957	8.7656	4.9790	7.0	4.0948	8.4154	4.8889	-4.9
4.2487	8.9676	5.0269	-0.3	4.1707	8.7062	4.9744	0.0
4.3144	9.2357°	-	-	$\mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			
$\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$				3.9922	12.390	4.7914	6.0
4.0953	12.761	4.8609	-6.9	4.0649	12.695	4.8632	1.2
4.1585	13.040	4.9280	-5.4	4.1603	13.118	4.9654	2.1
4.2340	13.375	5.0064	-5.5	4.2489	13.518	5.0598	1.9
4.3129	13.737	5.0913	-2.8	4.3468	13.971	5.1649	2.3
4.3358	13.850	5.1192	1.3	4.4479	14.444	5.2710	0.4
4.3593	13.950	5.1398	-2.6	4.5447	14.895	5.3673	-5.8
4.3985	14.136	5.1829	-0.3	4.6446	15.396	5.4783	1.6
4.4411	14.344	5.2269	-0.6	4.6621	15.480	5.4956	1.1
4.4465	14.357	5.2315	-1.7	$\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			
4.4725	14.478	5.2579	-2.2				
4.5061	14.639	5.2938	-1.1	0.00500	-	0.8764	-3.3
4.5689	14.942	5.3603	0.8	0.01000	-	0.8526	-1.6

$\mathrm{m}, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	m, $\mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
0.01500	-	0.8399	-0.4	4.2655	13.732	5.1454	-2.5
0.02000	-	0.8319	0.3	4.2667	13.737	5.1464	-2.7
$\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl				4.3127	13.950	5.1954	-2.2
0.10883	0.20047	0.8403	3.4	4.3571	14.159	5.2433	-1.3
0.10929	0.20149	0.8410	3.9	4.3980	14.357	5.2891	1.0
0.18963	0.36979	0.8801	-1.3	4.4243	14.478	5.3152	-1.1
0.27784	0.57775	0.9337	-2.6	4.4448 4.4879	14.580	5.3389	0.6
0.36816	0.81629	0.9942	-2.3	4.4879 4.5739	14.790 15.215	5.3859	1.0
0.44027	1.0260	1.0458	-1.4	4.5739 4.6215	15.215 15.453	5.4798 5.5315	0.8
0.52934	1.3087	1.1127	-0.4	4.6215	15.453	5.5315	-0.2
0.53445	1.3258	1.1167	-0.3	$\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			
0.54043	1.3467	1.1220	0.5	0.00500	-	0.8764	-3.5
$\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}				0.01000	-	0.8526	-1.4
0.56621	0.85826	1.1406	-0.9	0.01500	-	0.8399	0.2
0.66288	1.0257	1.2186	-0.4	0.02000	-	0.8319	1.2
0.74455	1.1701	1.2882	0.1	$\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl			
0.81283	1.2933	1.3500	1.7				
0.89193	1.4376	1.4240	3.4	0.091948 0.18040	0.17479 0.35158	$0.8696^{\text {a }}$	41.8
0.98683	1.6097	1.5121	1.1	0.18040 0.27692	0.35158 0.58024	0.8803 0.9409	3.6 1.4
1.0727	1.7686	1.5972	1.0	0.276708	0.58184 0.81843	0.9409 0.9997	1.4 -2.4
1.1413	1.8957	1.6661	-0.2	0.38305	0.86373	0.9997 1.0111	-2.4
1.2140	2.0329	1.7431	0.7	$\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}			
1.3007	2.1967	1.8360	0.6				
1.3811	2.3494	1.9242	0.3	0.47154	0.70306	1.0769	-2.1
1.4458	2.4724	1.9958	-0.4	0.50236	0.75777	1.1051	2.6
1.5107	2.5970	2.0698	-0.2	0.63008	0.97707	1.2051	0.3
1.5875	2.7440	2.1573	-1.1	0.74939	1.1880	1.3060	-0.9
1.6733	2.9095	2.2573	-1.1	0.84803	1.3670	1.3962	0.0
1.7527	3.0626	2.3503	-1.8	0.92641	1.5099	1.4694	-1.0
1.8393	3.2310	2.4539	-1.1	1.0243	1.6918	1.5664	-0.2
1.9063	3.3615	2.5346	-0.7	1.1332	1.8959	1.6782	0.0
1.9266	3.4004	2.5582	-1.4	1.2169	2.0547	1.7678	0.8
1.9885	3.5209	2.6327	-1.3	1.3148	2.2410	1.8746	0.6
2.0650	3.6692	2.7239	-2.3	1.4166	2.4362	1.9889	0.4
2.1551	3.8464	2.8343	-0.6	1.5191	2.6340	2.1068	0.4
2.2329	3.9996	2.9294	0.8	1.6105	2.8115	2.2144	0.6
2.2870	4.1055	2.9943	0.6	1.7015	2.9894	2.3237	1.5
2.3137	4.1598	3.0288	3.1	1.7832	3.1476	2.4204	-0.4
2.3755	4.2779	3.0985	-1.2	1.8669	3.3122	2.5230	0.5
2.4031	4.3351	3.1351	2.5	1.9617	3.4978	2.6384	-0.1
2.4949	4.5170	3.2449	3.2	2.0586	3.6881	2.7570	-0.6
2.5801	4.6857	3.3448	2.6	2.1850	3.9374	2.9124	-0.7
2.6153	4.7530	3.3824	-1.0	2.2592	4.0842	3.0036	-0.6
2.6785	4.8823	3.4593	2.2	2.3532	4.2696	3.1172	-2.0
2.7874	5.1013	3.5833	0.6	2.4179	4.4016	3.2001	2.2
2.8821	5.2947	3.6899	-0.6	2.4962	4.5571	3.2937	1.0
2.9664	5.4696	3.7836	-1.7	2.5773	4.7198	3.3908	0.8
3.0634	5.6766	3.8919	-1.0	2.6766	4.9191	3.5067	-1.3
3.1571	5.8794	3.9927	-2.8	2.7696	5.1104	3.6172	0.1
3.2451	6.0777	4.0883	-2.3	2.8668	5.3093	3.7267	-2.9
3.3405	6.3027	4.1928	0.4	2.9560	5.4992	3.8307	-0.6
3.4229	6.5020	4.2792	-0.2	3.0548	5.7107	3.9406	-1.7
3.5092	6.7206	4.3693	-0.3	3.1481	5.9196	4.0469	1.4
3.6062	6.9816	4.4711	1.0	3.2447	6.1389	4.1512	0.5
3.6796	7.1894	4.5471	1.4	3.3140	6.2985	4.2222	-3.0
3.7600	7.4271	4.6287	0.7	3.3979	6.5072	4.3155	1.1
3.8668	7.7618	4.7366	-0.6	3.4977	6.7611	4.4193	0.1
3.9570	8.0619	4.8288	-0.6	3.5644	6.9424	4.4907	2.2
3.9728	8.1152	4.8445	-1.1	3.6459	7.1746	4.5774	4.9
4.0497	8.3895	4.9270	2.7	3.7238	7.4020	4.6549	2.6
4.0572	8.4197	4.9369	4.8	3.7894	7.6028	4.7203	1.1
4.0983	8.5680	4.9788	4.5	3.7985	7.6244	4.7244	-4.0
4.1420	8.7393	5.0283	8.8	3.8654	7.8397	4.7920	-4.4
4.1497	8.7656	5.0342	6.8	3.9692	8.1889	4.8970	-4.6
4.2009	8.9676	5.0841	3.6	4.0385	8.4392	4.9720	0.2
4.2669	9.2357°	-	-	$\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			
$\mathrm{Gd}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$				3.8278	11.978	4.7713	13.1
4.0495	12.761	4.9159	-8.3	3.9192	12.341	4.8543	3.3
4.1119	13.040	4.9838	-4.5	3.9508	12.444	4.8702	-12.8
4.1758	13.320	5.0485	-5.9	4.0159	12.753	4.9528	3.9
4.1873	13.375	5.0623	-4.1	4.0409	12.854	4.9747	0.5

Table I (continued)

$\underline{m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	m, $\mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
$\mathrm{Ho}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$				3.8942	8.0899	4.9254	-5.3
3.9831	12.722	4.9772	0.1	3.8965	8.0999	4.9291	-3.9
4.0058	12.818	4.9994	-0.8	3.9205	8.1838	4.9545	-3.5
4.0097	12.853	5.0129	8.8	3.9627	8.3319	4.9980	-3.7
4.1024	13.245	5.1004	2.4				
4.1665	13.537	5.1693	6.2	$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			
4.2181	13.750	5.2122	-3.3	3.9635	12.722	5.0018	-0.7
4.3351	14.290	5.3334	-2.0	3.9842	12.818	5.0265	2.5
4.4711	14.936	5.4748	-2.1	3.9911	12.853	5.0362	5.1
4.4758	14.969	5.4845	2.7	4.0830	13.245	5.1246	-1.7
4.5770	15.484	5.5995	10.3	4.1462	13.537	5.1946	2.7
4.6314	15.717	5.6393	-8.5	4.1943	13.750	5.2418	0.0
$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)				4.3109	14.290	5.3633	-0.1
				4.4467	14.936	5.5048	-1.4
0.00500	-	0.8764	-3.8	4.4498	14.969	5.5165	7.1
0.01000	-	0.8526	-1.3	4.5576	15.484	5.6233	-0.5
0.01500	-	0.8399	0.8	4.6221	15.804	5.6901	-2.5
0.02000	-	0.8319	2.1				
$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl				$\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			
				0.00500	-	0.8764	-2.0
0.10143	0.19255	0.8667^{8}	38.5	0.01000	-	0.8526	-0.5
0.21043 0.32484	0.42763	$0.9154{ }^{\text {a }}$	22.9	0.01500	-	0.8399	0.4
0.32484 0.43575	0.70531	0.9738	2.1	0.02000	-	0.8319	0.9
0.43575 0.53348	1.0238	1.0543	0.0				
0.53348 0.60101	1.3392	1.1302	-1.0		${ }^{\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3}}$		
0.60101 0.66452	1.5786	1.1870	0.2	0.096434	0.17965 0.34759	$0.8517^{\text {a }}$	19.4
0.66452 0.72852	1.8146	1.2395	-1.3	0.17829	0.34759	0.8807	3.8
0.72852	2.0685	1.2958	-1.2	0.28429	0.59691	0.9426	-2.3
0.79699	2.3545	1.3574	-1.6	0.36114	0.80202	0.9958	-2.4
0.87063	2.6835	1.4284	0.3	0.36834	0.82175	1.0003	-3.0
0.94259	3.0190	1.4982	0.5	$\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}			
0.98316	3.2156	1.5388	0.8	0.45110	0.67011	1.0639	-0.6
1.0575	3.5887	1.6148	1.3	0.50843	0.76957	1.1124	3.5
1.0751	3.6740	1.6304	-1.3	0.59010	0.91021	1.1770	1.9
1.0927	3.7693	1.6507	0.7	0.66966	1.0491	1.2418	-1.0
$\begin{aligned} & 1.1384 \\ & 1.1757 \end{aligned}$	4.0125	1.6997	1.63.2	0.74758	1. 1902	1.3124	0.3
	4.2171	1.7411		0.83591	1.3521	1.3952	1.0
$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}				0.93543	1.5338	$\begin{aligned} & 1.4882 \\ & 1.5689 \end{aligned}$	-2.8
1.1368	$\begin{aligned} & 1.9113 \\ & 1.9853 \end{aligned}$	1.6936	-2.8	1.0084	1.6756		4.2
1.1752		1.7361	-1.3	1.1027	1.8492	1.66091.7540	-2.2
1.2122	2.0566	1.7772	-0.2	1.1846	2.0090		2.6
1.3180	2.2591	1.8940	-0.5	1.2858	2.2013	1.8634	-0.3
1.4052	2.4281	1.9942	0.4	1.3737	2.3713	1.9636	-0.4
1.4907	2.5938	2.0933	-0.1	1.4701	2.5587	2.0758	-0.8
1.5750	2.7580	2.1929	-0.5	1.5590	2.7324	2.1813	-1.2
1.6615	2.9283	2.2981	0.4	1.6494	2.9095	2.2900	-2.0
1.7476	3.0980	2.4037	0.5	1.7249	3.0597	2.3843	-0.4
1.8297	3.2603	2.5053	0.6	1.8097	3.2268	2.4885	-1.4
1.9273	3.4556	2.6295	2.8	1.9014	3.4101	2.6049	0.1
2.0313	3.6588	2.7554	-2.2	1.9869	3.5813	2.7139	1.1
2.1066	3.8110	2.8530	0.2	2.0918	3.7916	2.8477	1.8
2.1968	3.9926	2.9684	1.4	2.2113	4.0319	3.0000	2.0
2.2925	4.1849	3.0892	1.2	2.3032	4.2170	3.1164	1.4
2.3648		3.1779	-1.4	2.3951	4.4025	3.2317	0.0
2.4557	$\begin{aligned} & 4.5139 \\ & 4.767 \end{aligned}$	3.2928	-0.7	2.4711	4.5599	3.3307	2.8
2.5595		3.4231	0.2	2.5752	4.7716	3.4584	-0.5
2.6636	4.9406	3.5503	-1.0	2.6796	4.9873	3.5865	-2.5
2.7734	5.1864	3.6820	-3.2	2.775	5.1886	3.7038	-3.3
2.8474	5.3267	3.7726	-1.5	2.9013	5.4587	3.8558	-4.4
2.9763	5.6058	3.9255	-1.3	2.9727	5.6172	3.9432	-2.5
3.0783	5.8329	4.0441	-1.3	3.0865	5.8773	4.0817	1.6
3.1730	6.0497	4.1519	-1.9	3.1809	6.0964	4.1903	0.6
3.3040	6.3672	4.3024	1.6	3.2501	6.2620	4.2686	-0.1
3.3695	6.5360	4.3790	5.9	3.3440	6.5018	4.3799	5.4
3.4236		4.4361	3.8	3.4215	6.7026	4.4650	4.4
3.5088		4.5311	6.5	3.5052	6.9272	4.5536	1.5
3.6768	$\begin{aligned} & 6.9063 \\ & 7.3888 \end{aligned}$	4.7044	1.0	3.5846	7.1584	4.6427	4.9
3.7435	7.5939	4.7717	-1.8	3.6584	7.3736	4.7164	0.0
3.7553	$\begin{aligned} & 7.6363 \\ & 7.8492 \end{aligned}$	4.7874	1.5	3.7365	7.6160	4.7967	-2.1
3.8226		4.8523	-3.9	3.8112	7.8586	4.8733	-3.6
				3.8900	8.1235	4.9531	-5.6
				3.9729	8.4154	5.0389	-5.6
				4.0484	8.7062	5.1246	2.2

$m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	$m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \operatorname{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
$\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$				3.8802	8.0999	4.9498	-1.7
3.9028	12.514	4.9677	-4.3	3.9057	8.1838	4.9733	-5.4
3.9824	12.866	5.0541	-0.2	3.9487	8.3319	5.0157	-8.5
4.0550	13.189	5.1310	1.7	$\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			
4.1337	13.542	5.2128	2.1				
4.1859	13.782	5.2684	3.3	3.9450	12.722	5.0253	5.0
4.2399	14.029	5.3238	2.0	3.9665	12.818	5.0489	5.8
4.3010	14.308	5.3845	-2.0	3.9738	12.853	5.0581	7.3
4.3272	14.438	5.4150	0.6	4.0640	13.245	5.1486	2.0
4.3684	14.639	5.4606	1.8	4.1280	13.537	5.2175	2.7
4.4205	14.894	5.5175	1.7	4.1748	13.750	5.2663	1.5
4.5030	15.302	5.6066	-1.2	4.2948	14.290	5.3835	-10.3
4.6215	15.922	5.7444	-1.4	4.4228	14.936	5.5345	1.4
$\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)				4.4260	14.969	5.5462	9.5
				4.5326	15.484	5.6543	-0.3
0.00500	-	0.8764	-3.7	4.5964	15.810	5.7247	-1.3
0.01000	-	0.8526	-1.2	4.6400	16.037	5.7735	-1.7
0.01500	-	0.8399	0.8	$\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ (from conductance)			
0.02000	-	0.8319	2.2				
$\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl				0.00500	-	0.8764	-2.7
				0.01000	-	0.8526	-1.2
0.10125°	0.19255	$0.8683^{\text {a }}$	39.7	0.01500	-	0.8399	-0.2
0.21005	0.42763	$0.9170^{\text {a }}$	23.7	0.02000	-	0.8319	0.2
0.32438	0.70531	0.9752	2.2	$\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. KCl			
0.43527	1.0238	1.0555	-0.5				
0.53240	1.3392	1.1325	-0.2	0.10852	0.20047	0.8427	3.2
0.60061	1.5786	1.1877	-1.2	0.10897	0.20149	0.8434	3.7
0.66378	1.8146	1.2408	-2.0	0.18891	0.36979	0.8835	-1.5
0.72741	2.0685	1.2977	-1.1	0.27659	0.57775	0.9380	-2.9
0.79507	2.3545	1.3607	0.4	0.36611	0.81629	0.9998	-2.2
0.86973	2.6835	1.4298	-0.6	0.43753	1.0260	1.0523	-1.3
0.94141	3.0190	1.5001	0.1	0.52539	1.3087	1.1210	0.4
0.98203	3.2156	1.5405	0.1	0.53047	1.3258	1.1250	0.4
1.0561	3.5887	1.6169	1.1	0.53649	1.3467	1.1303	0.9
1.0738	3.6740	1.6324	-1.8	$\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}			
1.0903	3.7693	1.6543	2.9	0.56217	0.85826	1.1488	-1.2
1.1368	4.0125	1.7021	1.7	0.65770	1.0257	1.2282	-1.1
1.1741	4.2171	1.7435	3.1	0.73819	1.1701	1.2993	-0.6
$\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. CaCl_{2}				0.80523	1.2933	1.3627	1.5
1.1352	1.9113	1.6960	-2.8	0.88310	1.4376	1.4382	3.0
1.1734	1.9853	1.7388	-0.9	0.97639	1.6097	1.5283	0.6
1.2105	2.0566	1.7797	-0.2	1.0607	1.7686	1.6153	0.6
1.3164	2.2591	1.8964	-1.1	1.1277	1.8957	1.6861	0.3
1.4031	2.4281	1.9972	0.8	1.1992	2.0329	1.7646	0.8
1.4881	2.5938	2.0970	1.3	1.2844	2.1967	1.8593	0.2
1.5724	2.7580	2.1965	0.5	1.3633	2.3494	1.9493	-0.3
1.6587	2.9283	2.3020	1.5	1.4262	2.4724	2.0233	0.1
1.7451	3.0980	2.4071	0.5	1.4899	2.5970	2.0987	0.0
1.8276	3.2603	2.5082	-1.0	1.5650	2.7440	2.1883	-0.9
1.9261	3.4556	2.6312	-1.8	1.6488	2.9095	2.2908	-0.9
2.0278	3.6588	2.7602	-1.5	1.7259	3.0626	2.3868	-0.5
2.1033	3.8110	2.8575	-0.2	1.8101	3.2310	2.4935	0.8
2.1931	3.9926	2.9734	1.2	1.8759	3.3615	2.5757	-0.2
2.2889	4.1849	3.0941	-0.2	1.8957	3.4004	2.5999	-1.1
2.3601	4.3289	3.1842	-0.6	1.9560	3.5209	2.6765	-1.3
2.4509	4.5139	3.2992	-0.6	2.0296	3.6692	2.7714	-0.5
2.5540	4.7267	3.4304	0.8	2.1178	3.8464	2.8842	-0.9
2.6580	4.9406	3.5578	-1.5	2.1935	3.9996	2.9820	-0.5
2.7656	5.1684	3.6923	0.5	2.2453	4.1055	3.0499	0.8
2.8401	5.3267	3.7823	-0.3	2.2715	4.1598	3.0850	2.2
2.9693	5.6058	3.9348	-2.9	2.3303	4.2779	3.1586	0.2
3.0698	5.8329	4.0553	-0.8	2.3579	4.3351	3.1952	1.3
3.1637	6.0497	4.1641	-1.1	2.4466	4.5170	3.3090	1.4
3.2944	6.3672	4.3149	0.7	2.5284	4.6857	3.4132	1.2
3.3587	6.5360	4.3931	6.6	2.5616	4.7530	3.4533	-0.8
3.4122	6.6738	4.4510	4.9	2.6229	4.8823	3.5326	0.9
3.4976	6.9063	4.5456	5.4	2.7273	5.1013	3.6622	-0.6
3.6657	7.3888	4.7187	-3.9	2.8182	5.2947	3.7735	-2.3
3.7301	7.5939	4.7889	-2.8	2.8985	5.4696	3.8722	-2.3
3.7410	7.6363	4.8057	2.4	2.9917	5.6766	3.9852	-2.5
3.8099	7.8492	4.8684	-8.4	3.0805	5.8794	4.0919	-2.2
3.8786	8.0899	4.9452	-4.7	3.1644	6.0777	4.1925	-0.7
				3.2563	6.3027	4.3012	1.0

$m, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \mathrm{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$	$m, \operatorname{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	m, standard	$\phi, \operatorname{Re}\left(\mathrm{ClO}_{4}\right)_{3}$	$10^{3} \Delta \phi$
3.3346	6.5020	4.3925	2.5	$\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$			
3.4186	6.7206	4.4850	0.0	3.9453	12.761	5.0457	-8.0
3.5115	6.9816	4.5917	3.2	4.0079	13.040	5.1132	-6.1
3.5835	7.1894	4.6690	1.5	4.0827	13.375	5.1920	-5.7
3.6613	7.4271	4.7535	1.5	4.1612	13.737	5.2769	-3.2
3.7658	7.7618	4.8637	-0.4	4.2069	13.950	5.3260	-2.3
3.8545	8.0619	4.9572	-1.0	4.2922	14.357	5.4195	0.3
3.8693	8.1152	4.9741	0.3	4.2979	14.377	5.4221	-3.2
3.9455	8.3895	5.0571	3.3	4.3173	14.478	5.4469	0.7
3.9541	8.4197	5.0656	2.7	4.3493	14.628	5.4793	-1.5
3.9937	8.5680	5.1092	4.8	4.4537	15.148	5.5961	0.3
4.0375	8.7393	5.1584	8.1	4.4810	15.286	5.6267	0.1
4.0451	8.7656	5.1644	6.1	4.5205	15.488	5.6713	-0.2
4.0972	8.9676	5.2128	-0.1	4.5775	15.785	5.7368	-0.8
4.1624	9.2357°	-	-	4.6313	16.082	5.8047	3.0

${ }^{a}$ This point given a weight of zero in the least-squares fit. ${ }^{b}$ The osmotic coefficients of CaCl_{2} solutions are not highly reliable above 9.0 m so this point was not included in the least-squares fit. ${ }^{c}$ The molalities of the $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ solutions in equilibrium with KCl solutions were adjusted a small amount (see text for discussion).

Figure 1. Differences between experimental and calculated osmotic coetficients of $\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$ and $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ at $25^{\circ} \mathrm{C}$. A, estimated from conductances; O , isopiestic vs. $\mathrm{KCl} ;$, isopiestic vs. $\mathrm{CaCl}_{2} ; \mathbf{O}$, isopiestic vs. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Debye-Hückel ion-size parameters from electrical conductance data. These å values were used to calculate approximate osmotic coefficients for the rare earth perchlorates at 0.005, 0.010, 0.015 , and 0.020 m . The Debye-Hückel equation would not be expected to apply to higher concentrations than these, and may already be breaking down by 0.020 m . Since the dilute solution ϕ values for the rare earth perchlorates are only approximate, they were averaged (Nd data were not included since they are much different than results for the other salts). The average values were included in the least-squares fits for each salt, along with the experimental isopiestic data. It was found that good fits could be obtained by fixing the first three powers at $r_{1}=0.75$, $r_{2}=0.875$, and $r_{3}=1$ while the other four powers were allowed to vary in increments of $m^{1 / 2}$. Similar series also worked for the rare earth chlorides (16). The coefficient of the $r_{1}=0.75$ term was much smaller for each rare earth perchlorate than for the corresponding rare earth chloride, while the percent error of this coefficient was larger. However, this term was retained since we felt that it would be best to utilize power series with the dominant terms having the same powers, to allow a more meaningful comparison with the rare earth chloride data. The differences between the experimental and calculated values of ϕ are given in Table I while the coefficients, powers, and standard deviations for the best fits are given in Table II. Table III contains values of ϕ, a_{1}, and $\gamma_{ \pm}$at various even molalities.

Fifteen points out of nearly 800 points were given weights of zero in the least-squares fits to eq 3 (one or two points were weighted zero for each salt), 12 of these from low concentrations where the isopiestic measurements are of lower accuracy. The other three points that were dropped were measured relative to a $9.24 \mathrm{~m} \mathrm{CaCl}_{2}$ standard solution. The osmotic coefficients of CaCl_{2} solutions are not known as accurately above 9 m as they are below this concentration (5) so these three rare earth perchlorate osmotic coefficients were not included in the least-squares fits, although the isopiestic molalities should be reliable. All other osmotic coefficients were given unit weights.

The standard deviations of eq 3 are slightly larger for the rare earth perchlorates than for the rare earth chlorides. This occurs, in part, because three different electrolytes were used as isopiestic standards for the perchlorates, whereas only two were used for the chlorides. Also, the osmotic coefficients of the rare earth perchlorates become much larger than for the chlorides, so a similar percentage scatter in the data at high concentrations would result in a larger standard deviation for the perchlorates. The largest standard deviation was obtained for $\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$, mainly due to scatter in the $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$ data. The original determination exhibited significant scatter so new samples were weighed out and the equilibrations repeated. The second run had less scatter than the first but was otherwise in agreement with it, so both determinations are reported.

The data for $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ measured with the KCl standard had a small mismatch with data obtained using the CaCl_{2} standard. The samples that were equilibrated with the CaCl_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ standards were weighed directly from the concentrated stock solution, while those for the KCl equilibrations were weighed from a dilution prepared from the concentrated stock solution. The $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ stock concentration was remeasured and found to agree with earlier determinations, but too little of the dilution remained to perform an analysis on it. We assumed the concentration of this dilution was slightly in error and adjusted the $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ molality to bring the dilute data in agreement with the data at higher concentrations. This adjustment was about 0.37% in terms of the molality. As will be seen below in series plots of the results for the various perchlorates, $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ shows no unusual behavior after this is done. While this adjustment has only a small effect on the thermodynamic properties of $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$, we do feel that the $\mathrm{KCl}-\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$ isopiestic ratio should be redetermined as a check on our results.

The errors due to isopiestic measurements have been discussed in detail elsewhere (16), so they need only be summa-

Table II. Coefficients and Powers for Osmotic Coefficlent Polynomials

rized here. The stock and standard solution concentration uncertainties, together with the maximum error in the equilibrium molalities, result in a maximum error in the experimental rare earth perchlorate osmotic coefficients of about 0.4% above 4 $\mathrm{m}, 0.3 \%$ between 0.5 and 4 m , and about 0.34% below 0.5 m . The probable errors are about two-thirds of these values. The relative errors in the osmotic coefficients as a function of concentration are somewhat smaller than these values. The errors in the osmotic coefficients of the isopiestic standards have been discussed elsewhere (4,5). Due to the absence of experimental dilute solution activity coefficients (approximate values were used), the activity coefficients reported here are uncertain by about 1-2 \% .
The molal solubilities of six of the rare earth perchlorates, determined isopiestically in this study, are within 0.2% of those
determined by direct analyses (13), and all of the solubilities are within 0.5% except for $\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$. The saturated solution isopiestic measurements were performed by equilibrating samples of the rare earth perchlorate solutions with other samples that contained both solution and the corresponding hydrated solid rare earth perchlorates. The solid hydrated rare earth perchlorates had been prepared by concentrating samples of the stock solutions over a $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ desiccant. The resulting solid rare earth perchlorates form on the surface of the solution and they are glassy in appearance. Zinov'ev and Shchirova (20) studied the $\mathrm{H}_{2} \mathrm{O}-\mathrm{HClO}_{4}-\mathrm{Ce}\left(\mathrm{ClO}_{4}\right)_{3}$ phase system and found that both eight and nine hydrated $\mathrm{Ce}\left(\mathrm{ClO}_{4}\right)_{3}$ can exist in the solid phase. The fact that the solid phases were glassy in appearance suggests that more than one hydrate may have been present. If so, the solubility differences found between the direct analyses

Table III. Osmotic Coefficients, Water Activities, and Activity Coefficients at Even Molalities

m	ϕ	a_{1}	$\gamma_{ \pm}$	m	ϕ	a_{1}	$\gamma_{ \pm}$
3.4	4.2553	0.3525	89.57	0.2	0.8862	0.98731	0.3638
3.6	4.4637	0.3141	133.7	0.3	0.9535	0.97960	0.3762
3.8	4.6690	0.2784	199.0	0.4	1.0256	0.97087	0.4029
4.0	4.8734	0.2454	296.3	0.5	1.1020	0.96107	0.4409
4.2	5.0796	0.2149	442.0	0.6	1.1827	0.95015	0.4904
4.4	5.2902	0.1869	662.9	0.7	1.2679	0.93805	0.5528
4.6	5.5078	0.1611	1002	0.8	1.3575	0.92472	0.6303
4.6215	5.5317	0.1585	1048	0.9	1.4516	0.91015	0.7261
$\mathrm{Tb}\left(\mathrm{ClO}_{4}\right)_{3}$				1.0	1.5498	0.8943	0.8444
0.1	0.8314	0.99403	0.3825	1.2	1.7583	0.8590	1.171
0.2	0.8889	0.98727	0.3665	1.4	1.9807	0.8189	1.671
0.3	0.9551	0.97956	0.3790	1.6	2.2144	0.7747	2.443
0.4	1.0258	0.97086	0.4054	1.8	2.4565	0.7271	3.642
0.5	1.1007	0.96112	0.4430	2.0	2.7040	0.6773	5.508
0.6	1.1800	0.95026	0.4919	2.2	2.9538	0.6261	8.416
0.7	1.2638	0.93824	0.5534	2.4	3.2031	0.5747	12.94
0.8	1.3522	0.92501	0.6298	2.6	3.4494	0.5240	19.94
0.9	1.4451	0.91053	0.7242	2.8	3.6906	0.4749	30.69
1.0	1.5423	0.8948	0.8406	3.0	3.9251	0.4280	47.10
1.2	1.7489	0.8597	1.162	3.2	4.1522	0.3839	71.91
1.4	1.9696	0.8198	1.653	3.4	4.3716	0.3426	109.1
1.6	2.2013	0.7758	2.408	3.6	4.5839	0.3045	164.6
1.8	2.4411	0.7286	3.574	3.8	4.7908	0.2693	247.1
2.0	2.6855	0.6791	5.379	4.0	4.9943	0.2370	369.8
2.2	2.9315	0.6283	8.172	4.2	5.1971	0.2074	553.1
2.4	3.1762	0.5773	12.48	4.4	5.4026	0.1803	829.6
2.6	3.4171	0.5272	19.08	4.6	5.6139	0.1555	1252
2.8	3.6524	0.4786	29.13	4.6314	5.6477	0.1518	1337
3.0	3.8809	0.4321	44.30	$\mathrm{Er}\left(\mathrm{ClO}_{4}\right)_{3}$			
3.2	4.1022	0.3883	67.05	0.1	0.8275	0.99405	0.3802
3.4	4.3166	0.3473	100.9	0.2	0.8857	0.98732	0.3636
3.6	4.5253	0.3091	151.2	0.3	0.9540	0.97959	0.3764
3.8	4.7300	0.2738	225.7	0.4	1.0271	0.97083	0.4036
4.0	4.9328	0.2413	336.5	0.5	1.1044	0.96099	0.4423
4.2	5.1358	0.2113	501.9	0.6	1.1859	0.95002	0.4926
4.4	5.3407	0.1839	750.2	0.7	1.2717	0.93787	0.5559
4.6	5.5477	0.1590	1124	0.8	1.3618	0.92450	0.6345
4.6196	5.5681	0.1567	1170	0.9	1.4562	0.90988	0.7316
$\mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3}$				1.0	1.5549	0.8940	0.8515
				1.2	1.7642	0.8585	1.183
0.1	0.8354	0.99400	0.3835	1.4	1.9879	0.8183	1.692
0.2	0.8936	0.98720	0.3689	1.6	2.2234	0.7739	2.481
0.3	0.9594	0.97947	0.3820	1.8	2.4679	0.7261	2.781
0.4	1.0297	0.97076	0.4089	2.0	2.7181	0.6759	5.637
0.5	1.1044	0.96099	0.4472	2.2	2.9710	0.6244	8.652
0.6	1.1840	0.95010	0.4969	2.4	3.2236	0.5726	13.37
0.7	1.2684	0.93802	0.5597	2.6	3.4730	0.5217	20.70
0.8	1.3577	0.92472	0.6380	2.8	3.7172	0.4723	32.02
0.9	1.4517	0.91015	0.7350	3.0	3.9546	0.4253	49.37
1.0	1.5503	0.8943	0.8551	3.2	4.1844	0.3810	75.73
1.2	1.7599	0.8588	1.187	3.4	4.4066	0.3397	115.5
1.4	1.9839	0.8186	1.698	3.6	4.6221	0.3015	175.1
1.6	2.2189	0.7743	2.487	3.8	4.8326	0.2662	264.4
1.8	2.4619	0.7266	3.712	4.0	5.0404	0.2339	398.3
2.0	2.7096	0.6767	5.619	4.2	5.2477	0.2043	599.9
2.2	2.9590	0.6256	8.586	4.4	5.4569	0.1772	905.3
2.4	3.2074	0.5742	13.19	4.6	5.6690	0.1527	1371
2.6 2.8	3.4524 3.6922	0.5237 0.4747	20.31 31.23	4.6221	5.6926	0.1502	1435
3.0	3.9255	0.4280	47.87	$\mathrm{Tm}\left(\mathrm{ClO}_{4}\right)_{3}$			
3.2	4.1518	0.3839	73.03	0.1	0.8339	0.99401	0.3819
3.4	4.3712	0.3427	110.8	0.2	0.8902	0.98725	0.3660
3.6	4.5844	0.3044	167.3	0.3	0.9555	0.97956	0.3783
3.8	4.7928	0.2692	251.6	0.4	1.0263	0.97085	0.4047
4.0	4.9984	0.2367	377.3	0.5	1.1023	0.96106	0.4428
4.2	5.2036	0.2070	565.8	0.6	1.1833	0.95012	0.4927
4.4	5.4108	0.1799	850.5	0.7	1.2694	0.93797	0.5559
4.6	5.6222	0.1551	1284	0.8	1.3604	0.92457	0.6349
4.6042	5.6267	0.1546	1295	0.9	1.4560	0.90989	0.7329
$\mathrm{Ho}\left(\mathrm{ClO}_{4}\right)_{3}$				1.0	1.5561	0.8939	0.8543
				1.2	1.7682	0.8582	1.191
0.1	0.8287	0.99405	0.3803	1.4	1.9944	0.8177	1.709

m	ϕ	a_{1}	$\gamma_{ \pm}$	m	ϕ	a_{1}	$\gamma_{ \pm}$
1.6	2.2319	0.7731	2.514	3.4	4.4325	0.3376	120.4
1.8	2.4778	0.7251	3.769	3.6	4.6517	0.2992	183.5
2.0	2.7293	0.6748	5.738	3.8	4.8663	0.2638	278.7
2.2	2.9836	0.6231	8.829	4.0	5.0787	0.2313	422.5
2.4	3.2380	0.5712	13.68	4.2	5.2917	0.2016	641.2
2.6	3.4899	0.5200	21.26	4.4	5.5082	0.1744	976.9
2.8	3.7372	0.4704	33.05	4.6	5.7301	0.1497	1498
3.0	3.9782	0.4232	51.21	4.6400	5.7752	0.1450	1632
3.2	4.2116	0.3786	78.97	$\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$			
3.4	4.4368	0.3372	121.0				
3.6	4.6542	0.2990	184.2	0.1	0.8354	0.99400	0.3843
3.8	4.8653	0.2639	278.7	0.2	0.8918	0.98723	0.3688
4.0	5.0724	0.2317	420.2	0.3	0.9564	0.97954	0.3810
4.2	5.2799	0.2023	633.9	0.4	1.0261	0.97086	0.4073
4.4	5.4932	0.1752	962.3	0.5	1.1008	0.96111	0.4450
4.6	5.7202	0.1501	1482	0.6	1.1808	0.95023	0.4944
4.6215	5.7458	0.1476	1554	0.7 0.8	1.2660 1.3564	0.93814 0.92479	0.5571 0.6355
	$\mathrm{Yb}\left(\mathrm{ClO}_{4}\right)_{3}$			0.9	1.4517	0.91015	0.7330
0.1	0.8280	0.99405	0.3803	1.0	1.5515	0.8942	0.8540
0.2	0.8867	0.98730	0.3641	1.2	1.7647	0.8585	1.190
0.3	0.9555	0.97956	0.3773	1.4	1.9924	0.8179	1.711
0.4	1.0290	0.97077	0.4049	1.6	2.2318	0.7731	2.520
0.5	1.1066	0.96091	0.4441	1.8	2.4800	0.7249	3.788
0.6	1.1884	0.94991	0.4950	2.0	2.7340	0.6743	5.783
0.7	1.2745	0.93773	0.5589	2.2	2.9908	0.6224	8.926
0.8	1.3649	0.92433	0.6384	2.4	3.2479	0.5702	13.88
0.9	1.4596	0.90968	0.7366	2.6	3.5028	0.5188	21.65
1.0	1.5585	0.8938	0.8579	2.8	3.7533	0.4689	33.80
1.2	1.7684	0.8582	1.193	3.0	3.9977	0.4214	52.62
1.4	1.9928	0.8179	1.710	3.2	4.2349	0.3766	81.57
1.6	2.2292	0.7734	2.511	3.4	4.4641	0.3350	125.7
1.8	2.4748	0.7254	3.762	3.6	4.6856	0.2965	192.4
2.0	2.7264	0.6751	5.726	3.8	4.9004	0.2613	292.8
2.2	2.9810	0.6234	8.811	4.0	5.1110	0.2292	443.8
2.4	3.2354	0.5715	13.65	4.2	5.3211	0.1998	672.6
2.6	3.4871	0.5203	21.21	4.4	5.5363	0.1728	1025
2.8	3.7339	0.4708	32.93	4.6	5.7642	0.1480	1583
3.0	3.9741	0.4235	50.99	4.6313	5.8017	0.1442	1697
3.2	4.2069	0.3790	78.56				

and isopiestic methods may be due to slight differences in the composition of the solid phases.

In Figure 1 the differences between the experimental and calculated osmotic coefficients, for $\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$ and $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$, are shown as a function of the molality. Deviation plots of this type have the advantage of simultaneously showing mismatches between data sets when the isopiestic standards are changed, the scatter in the experimental data, and systematic differences between the experimental data and the equation used to represent it. It can be seen that nearly all of the data fall within $\pm 0.2 \%$ of eq 3 , with most of the data within $\pm 0.1 \%$. The mismatches that occurred when the isopiestic standards were changed are well within the uncertainty of the standard solutions' osmotic coefficients.

Results

Figures 2-4 show the concentration dependence of $\ln \gamma_{ \pm}$ ϕ, and a_{1} for $\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}, \mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}, \mathrm{LaCl}_{3}$, and LuCl_{3}. These thermodynamic properties have many qualitative similarities for the rare earth perchlorates and chlorides, but there are large quantitative differences. These differences are most extreme for the activity coefficients. For example, the activity coefficient of LuCl_{3} is about 14 at 4.0 m whereas it is 444 for $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$. At this concentration the water activity of LuCl_{3} is 0.385 while it is 0.229 for $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$. This indicates that water is bound much more tightly in the rare earth perchlorates than in the chlorides, in agreement with deductions from transport property measurements (13, 15).

Series plots of these same properties are given for the rare earth perchlorates in Figures 5-7, at 0.4, 1.4, 2.4, 3.4, and 4.4 m, as a function of the ionic radius (18). These constant molality series plots all have a distinct S shape from dilute solutions to over 2.4 m , but modifications do occur at higher concentrations. At low concentrations the water activities at constant molality decrease gradually from La to $\mathrm{Nd}-\mathrm{Sm}$, more rapidly to $\mathrm{Tb}-\mathrm{Dy}$, and then decrease gradually again to Lu. At higher concentrations the water activities decrease from La to Nd , and from Sm to Lu , with the trend for the middle and heavy rare earths displaced from the trend for the light rare earths. The osmotic and activity coefficients show similar series behavior, except that these properties increase from La to Lu.

There are experimental activity data for the dilute rare earth chloride solutions and these were used with isopiestic data to yield activity coefficients for the rare earth chlorides at higher concentrations. Since activity data for very dilute rare earth perchlorate solutions were not available, values of ϕ were estimated from conductance data for concentrations from 0.005 to 0.020 m . The differences between the actual dilute solution ϕ values for the various rare earth perchlorates are probably smaller than the uncertainty introduced by using à values from conductance data, so average values of ϕ were used for all of the rare earth perchlorates. The rare earth chlorides and perchlorates exhibit very similar series trends for ϕ, a_{1}, and $\gamma_{ \pm}$. This suggests that little error arises for $\gamma_{ \pm}$due to using constant ϕ values for the perchlorates at low concentrations.
The ionic radius of the rare earth ion decreases from La to

Figure 2. Natural log of the mean molal activity coefficients of LaCl_{3}, $\mathrm{LuCl}_{3}, \mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$, and $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ solutions at $25^{\circ} \mathrm{C}$.

Figure 3. Osmotic coefficients of $\mathrm{LaCl}_{3}, \mathrm{LuCl}_{3}, \mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$, and $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ solutions at $25^{\circ} \mathrm{C}$.
$\mathrm{Lu}(18)$ and this decrease results in an increase in the electrical charge density at the surface of the rare earth ion. This surface charge density increase across the rare earth series should result in an increase in the total number of water molecules affected by the rare earth ion, at least up to concentrations where water sharing between ions becomes important. This can account for the gradual decrease in a_{1}, at constant molality, from La to $\mathrm{Nd}-\mathrm{Sm}$ and from $\mathrm{Tb}-\mathrm{Dy}$ to Lu . It has been proposed that the inner sphere hydration number of the rare earth ion decreases by one between Nd and Tb , due to the decreasing ion size (12). The net result of this inner sphere hydration decrease is to cause the total rare earth ionic hydration to increase more rapidly, with ionic radius, than it would if the inner sphere hydration number remained constant (as it does for La to Nd and for Tb to Lu). This same argument has been used to explain series trends in the rare earth chloride water activities (16) and rare earth chloride and perchlorate transport properties $(13,15)$ at low and moderate concentrations. Only outer sphere ion pairs are believed to form in these solutions (1,13), or at least the amount of inner sphere chloride or perchlorate-rare earth complex is small enough as to have been undetected up to now. Thus the inner hydration sphere should contain only water and remain intact even up to saturation for the chlorides and perchlorates.

At high concentrations water sharing between ions becomes

Figure 4. Water activities of $\mathrm{LaCl}_{3}, \mathrm{LuCl}_{3}, \mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3}$, and $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ solutions at $25^{\circ} \mathrm{C}$.

Figure 5. Mean molal activity coefficients of rare earth perchlorate solutions at constant molalities.
important and the increase in total hydration with radius becomes modified, resulting in a more nearly monotone dependence of total hydration on ionic radius. The displacement of the a_{1} and ϕ trends for Sm -Lu above 3.4 m , from the trends for $\mathrm{La}-\mathrm{Nd}$, is probably due to the inner sphere hydration change. The water activities decrease more rapidly, with decreasing ionic radius, at high cocentrations than at low concentrations (except for the displacement due to the inner sphere hydration number change). This difference presumably occurs since the trends in the water activities are mainly due to overall cation hydration at low and moderate concentrations, whereas the binding of water by or between ion pairs should be important at higher concentrations.

The rare earth perchlorate transport data $(13,15)$ depend mainly on total cation hydration at low and moderate concentrations. Series curves for these transport properties have S

Figure 6. Osmotic coefficients of rare earth perchlorate solutions at constant molalities.
shapes similar to the activity data at these concentrations. However, the rare earth perchlorate transport properties at constant molalities above 3.5-3.7 m exhibit a prominent twoseries effect that is quite different from series trends present in the activity data (this new behavior is already starting to show up by about 2.5 m , but it does not occur in the complete form until the higher concentrations are reached). At high concentrations the electrical conductances decrease from La to Nd, rise to Tb , and then decrease to Lu. The perchlorate viscosity series curves undergo similar changes, except for a general increase across the rare earth series. This behavior occurs only when water sharing between ions becomes extensive. Similar modifications are also starting to occur in the transport properties of the rare earth chloride solutions, but the high concentration two-series behavior is not as well developed at 3.5 m as for the perchlorates.

The proposed transport mechanism at high concentrations (13, 15) involves the breaking and re-forming of the outer sphere ion pairs. The increasing strength of the ion pairs with decreasing ionic radius gives rise to the decreasing electrical conductances, and increasing viscosities, from La to Nd and from Tb to Lu . The gradual "release' of one inner sphere water to the rest of the solution at these high concentrations, as the inner sphere hydration decrease occurs, should slightly reduce the amount of ion pairing and enhance the tendency to flow in these perchiorate solutions, giving rise to the reversal in transport behavior between Nd and Tb . This "extra" water in the bulk of the solution is still surrounded by enough ions and ion pairs that it apparently cannot contribute very much to the water activity, although it probably causes the displacement in activity series trends between Nd and Sm .

The results tabulated in Table III indicate that the activity coefficients of the rare earth perchlorates reach very high values at high concentrations, the maximum being 1697 for $\mathrm{Lu}\left(\mathrm{ClO}_{4}\right)_{3}$ at saturation. Robinson and Lim (7) reported a value of 1510 for $\mathrm{UO}_{2}\left(\mathrm{ClO}_{4}\right)_{2}$ at 5.5 m . Examination of the activity coefficients

Figure 7. Water activities of rare earth perchlorate solutions at constant molalities.
tabulated by Robinson and Stokes (8) indicates that large activity coefficients occur for some other concentrated solutions of perchlorate electrolytes. Figure 4 illustrates the fact that the water activities of the rare earth perchlorates are appreciably lower than for the rare earth chlorides at equal molal concentrations. The osmotic coefficients tabulated by Robinson and Stokes (8), Hamer and Wu (2), and Libus and Sadowska (3) indicate that this order also holds at all concentrations for the acids and for the $\mathrm{Li}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$, Mn^{2+}, and $\mathrm{UO}_{2}{ }^{2+}$ salts of these anions. The water activities for the perchlorate electrolytes are lower than for the corresponding chlorides, even for dilute solutions where anion-cation interactions are small and differences in cation hydration have only minimal dependence of the anion. This suggests that anionwater interactions may be involved (the larger size of the perchlorate anion will also contribute to these activity differences, especially at low concentrations). The only exceptions given in Robinson and Stokes' and Hamer and Wu's tables are the Na^{+} and NH_{4}^{+}salts.

It is usually assumed that the perchlorate ion is unhydrated in aqueous solution. This assumption is mainly based on spectral evidence. However, Symons and Waddington (17) noted that symmetrical hydration can explain at least part of the spectral results. They found that a hydration number of 4 was consistent with their data. It has been suggested that the chloride ion forms a single hydrogen bond with water (19). The thermodynamic differences noted above can be accounted for if the perchlorate ion is more extensively hydrated than the chloride ion. Additional investigations will be required before the existence of this perchlorate ion hydration can be ascertained.

Acknowledgments

The rare earth oxides were purified by the rare earth separation group of the Ames Laboratory. The authors thank Loren E. Shiers for starting the Ho-Er-Yb measurements. Anton Habenschuss assisted with the computer programming and also offered valuable suggestions concerning this manuscript.

Literature Cited

(1) Choppin, G. R., Henrie, D. E., Buijs, K., Inorg. Chem., 5, 1743 (1966)
(2) Hamer, W. J., Wu, Y.-C., J. Phys. Chem. Ref. Data, 1, 1047 (1972).
(3) Libus, Z., Sadowska, T., J. Phys. Chem., 73, 3229 (1969).
(4) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 21, 374 (1976)
(5) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, preceding paper in this issue.
(6) Rard, J. A., Spedding, F. H., J. Chem. Eng. Data, 22, 56 (1977)
(7) Robinson, R. A., Lim, C. K., J. Chem. Soc., 1840 (1951).
(8) Robinson, R. A., Stokes, R. H., "Electrolyte Solutions", 2nd ed, revised, Butterworths, London, Engiand, 1959
(9) Spedding, F. H., Baker, J. L., Walters, J. P., J. Chem. Eng. Data, 20, 189 (1975)
(10) Spedding, F. H., Mohs, M. A., Derer, J. L., Habenschuss, A., submitted to J. Chem. Eng. Data.
(11) Spedding, F. H., Jaffe, S., J. Am. Chem. Soc., 76, 884 (1954).
(12) Spedding, F. H., Pikal, M. J., Ayers, B. O., J. Phys. Chem., 70, 2440 (1966).
(13) Spedding, F. H., Rard, J. A., J. Phys. Chem., 78, 1435 (1974).
(14) Spedding, F. H., Shiers, L. E., Brown, M. A., Derer, J. L., Swanson, D. L., Habenschuss, A., J. Chem. Eng. Data, 20, 81 (1975).
(15) Spedding, F. H., Shiers, L. E., Rard, J. A., J. Chem. Eng. Data, 20, 66 (1975).
(16) Spedding, F. H., Weber, H. O., Saeger, V. W., Petheram, H. H., Rard, J. A., Habenschuss, A., J. Chem. Eng. Data, 21, 341 (1976).
(17) Symons, M. C. R., Waddington, D., J. Chem. Soc., Faraday Trans. 2, 71, 22 (1975).
(18) Templeton, D. H., Dauben, C. H., J. Am. Chem. Soc., 76, 5237 (1954).
(19) Walrafen, G. E., J. Chem. Phys., 52, 4176 (1970).
(20) Zinov'ev, A. A., Shchirova, N. A., Russ. J. Inorg. Chem., 5, 626 (1960)

Received for review July 19, 1976. Accepted December 18, 1976. This work was performed for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82

The Apparent Molal Volumes of Aqueous Solutions of $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgCl}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$, and MgSO_{4} from 0 to 1000 Bars at 0,25 , and $50{ }^{\circ} \mathrm{C}^{\dagger}$

Chen-Tung Chen, Robert T. Emmet, and Frank J. Millero*
Contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

Abstract

The densities of aqueous solutions of $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgCl}_{2}$, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and MgSO_{4} have been measured with a high pressure magnetic float densimeter from 0 to 1000 bars, 0.01 to 1.0 m ionic strength, and at 0,25 , and $50^{\circ} \mathrm{C}$. The relative apparent molal volumes, $\phi_{V}(P)-\phi_{V}(0)$, of these solutions have been fitted to an equation of the form $\phi_{\mathbf{V}}(P)$ $-\phi_{V}(0)=\phi_{V}{ }^{0}(P)-\phi_{V}{ }^{0}(0)+S m^{1 / 2}$ where the relative infinite dilution partial molal volumes, $\phi_{\mathrm{V}}{ }^{\circ}(P)-\phi_{\mathrm{V}}{ }^{\circ}(0)$, and the slopes S are functions of applied pressure and temperature. The pressure, temperature, and concentration dependence of the apparent molal volumes are briefly discussed.

Although there are reliable density and apparent molal volume data for many electrolytes at $1 \mathrm{~atm}(9,11)$, little reliable data are available at high pressures. In our recent studies of the volume properties of multicomponent electrolyte solutions (13, 15) we have been examining the use of Young's rule (18) in predicting the properties of seawater. In order to predict the apparent molal volumes of seawater at elevated pressures (3), we had a need for reliable volume data on sea salts ($\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgCl}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$, and MgSO_{4}). The present paper contains results on the apparent molal volumes of these salts from 0 to 1000 bars applied pressure, 0.01 to 1.0 ionic strength (to 2.0 ionic strength for NaCl), and 0,25 , and $50^{\circ} \mathrm{C}$.

Experimental Section

The high pressure magnetic float densimeter used in this study is described in detail elsewhere (12). The high pressure densimeter consists essentially of a 1 atm densimeter (8) enclosed

[^0]in a nonmagnetic bomb with optical ports to observe the motion of the float. The apparatus consists of a pressure bomb, a magnetic float, and auxiliary measuring and control systems.

The pressure bomb used in this study was machined from beryllium copper. The cylindrical bomb contains two plugs seated with O rings to form a vessel of $170 \mathrm{~cm}^{3}$. The magnetic float is made of thick-wall (0.4 cm) Pyrex glass and contains an Alnico-5 bar magnet. The volume of the float is $58.7672 \mathrm{~cm}^{3}$ at $0^{\circ} \mathrm{C}$ and 1 atm .

The pressure bomb was completely immersed in a $30-\mathrm{L}$ constant temperature bath controlled to $\pm 0.001^{\circ} \mathrm{C}$ with a Hallikainen Thermotrol. The temperature of the bath was set to $\pm 0.005^{\circ} \mathrm{C}$ with a platinum resistance thermometer (calibrated by the National Bureau of Standards, 1968 temperature scale). A 2800-bar Enerpac hand pump was used to generate pressure. A 1400-bar Heise Bourdon tube gauge was used to set the pressure. The Heise gauge was calibrated with a Harwood Engineering deadweight tester. The pressures were found to be reproducible to ± 0.5 bars from 0 to 1000 bars and are thought to be accurate to 1.4 bars.
lon-exchanged ($18 \mathrm{M} \Omega$) water (Millipore-Super Q system) was used in the calibration runs and in the preparation of the solutions. Reagent grade salts were used, without further purification, for preparation of the solutions. The solutions of $\mathrm{NaCl}, \mathrm{KCl}$, $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and MgSO_{4} were analyzed by evaporation to dryness. The MgCl_{2} solutions were analyzed gravimetrically with AgNO_{3}

The calibration of the densimeter $(2,3)$ was made with ionexchanged water using the densities of water from the soundderived equation of state (4). The calibration results (2) indicate that the precision of the densities is $\pm 3 \mathrm{ppm}$ at a given temperature and $\pm 8 \mathrm{ppm}$ over the entire temperature range. The accuracy of the densities is thought to be $\sim 30 \mathrm{ppm}$ at 1000 bars applied pressure. An error of $\pm 30 \mathrm{ppm}$ in density is equivalent to an error of $\pm 0.3 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at 0.1 m and $\pm 0.03 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ at 1.0 m in ϕ_{V} for 1-1 electrolytes.

[^0]: \dagger Taken in part from the dissertation submitted by Robert T. Emmet in partial fulfillment of the requirements for the degree of Doctor of Philosophy, University of Miami.

